Pesquisar este blog

quarta-feira, 8 de maio de 2013

ANEMIA CONGÊNITA: NOVA TERAPIA A CAMINHO

Cientistas mostraram ser possível transformar células adultas de portadores da mutação genética causadora da doença em células-tronco pluripotentes. Objetivo é induzir diferenciação em células-tronco do sangue para transplante (imagem: Unicamp)

Pesquisa abre caminho para nova terapia contra anemia congênita

07/05/2013
Por Karina Toledo
Agência FAPESP – Com auxílio da técnica de reprogramação celular premiada com o Nobel de Medicina em 2012, cientistas brasileiros e americanos conseguiram transformar células da pele de portadores de uma mutação genética causadora de anemia aplástica em células-tronco pluripotentes, semelhantes às embrionárias.
Também conhecida como aplasia de medula, essa doença potencialmente fatal é caracterizada pela produção insuficiente de glóbulos brancos, vermelhos e plaquetas. O resultado são infecções frequentes, sangramentos e anemia grave.
O objetivo dos pesquisadores é encontrar, no futuro, um meio de transformar células-tronco pluripotentes induzidas (IPS, na sigla em inglês) em células-tronco hematopoiéticas – que têm a capacidade de formar todas as células do sangue –, para então infundi-las nos pacientes e promover regeneração da medula.
Atualmente, a única opção terapêutica nos casos de anemia aplástica congênita é o transplante de medula com doador, mas apenas 25% dos afetados encontram um voluntário compatível. No Brasil, estima-se o surgimento de 400 novos casos da doença por ano.
O estudo foi realizado por pesquisadores do Centro de Terapia Celular (CTC) – um dos Centros de Pesquisa, Inovação e Difusão (CEPIDs) da FAPESP – na Faculdade de Medicina de Ribeirão Preto, da Universidade de São Paulo (USP), e contou com a parceria de cientistas dos Institutos Nacionais de Saúde (NIH), dos Estados Unidos. Os resultados foram descritos na edição mais recente do The Journal of Clinical Investigation.
O método de reprogramação celular usado foi descrito em 2006 por Shinya Yamanaka, da Universidade de Kyoto, no Japão, e consiste em inserir em uma célula adulta certas proteínas que alteram a expressão do genoma celular.
“Esses quatro fatores de transcrição descobertos por Yamanaka ativam genes relacionados ao estágio embrionário da célula e desligam outros genes que deveriam estar ativos após o amadurecimento celular. Mas não sabíamos se era possível fazer essa reprogramação em portadores da mutação genética causadora de anemia aplástica”, contou Rodrigo Calado, pesquisador do CTC que coordenou a investigação.
Segundo Calado, a aplasia de medula também pode ser de origem autoimune. Nesse caso, o próprio sistema imunológico destrói as células da medula responsáveis pela produção do sangue e o tratamento é feito com medicamentos imunossupressores.
Mas, no caso dos pacientes que participaram da pesquisa, a causa da doença é um defeito no gene responsável pela síntese de uma enzima chamada telomerase, fundamental para manter a capacidade de proliferação celular.
“Nas pontas dos cromossomos existem estruturas chamadas telômeros. Eles servem para proteger o DNA, assim como o plástico presente na ponta dos cadarços. Toda vez que a célula se divide, os telômeros diminuem de tamanho, até um momento em que a célula não consegue mais se proliferar e morre ou entra em senescência (perde a capacidade de se dividir). Isso está relacionado ao processo de envelhecimento”, explicou Calado.
Mas a enzima telomerase é capaz de manter o comprimento dos telômeros intacto mesmo após a divisão celular. Por essa razão, precisa estar altamente expressa na fase embrionária e, durante toda a vida, nas células-tronco, que estão em constante divisão. Esse é o caso das células da medula óssea.
Nos pacientes com a mutação genética, como não há telomerase suficiente, as células hematopoiéticas sofrem uma espécie de envelhecimento precoce e não conseguem proliferar adequadamente. Outras partes do corpo também são afetadas e, frequentemente, essas pessoas sofrem de cirrose hepática ou fibrose pulmonar.
“Um dos nossos objetivos era justamente ver o que acontecia com os telômeros durante o processo de reprogramação celular. Teoricamente, eles deveriam ficar mais longos, já que a célula passa por uma espécie de rejuvenescimento, ou seja, volta a um estágio anterior de seu desenvolvimento”, disse Calado.
Para fazer essa verificação, os cientistas reprogramaram as células da pele de dois grupos de pacientes: portadores de anemia aplástica com a mutação genética e voluntários saudáveis que serviram de controle.
“Pudemos observar que, no grupo controle, os telômeros dobraram de tamanho após a reprogramação celular. Já nas células com o gene mutante eles continuaram praticamente iguais”, contou o pesquisador.
Outro fenômeno observado pelo grupo foi que, ao reduzir o nível de oxigênio nas estufas onde as células pluripotentes estavam armazenadas, o tamanho dos telômeros aumentou 20% nos dois grupos após um mês.
“Reduzimos a concentração de oxigênio de 21%, presente no ar ambiente, para 5%. Isso induziu a expressão de uma proteína chamada HIF, que por sua vez aumentou a síntese da telomerase. Além disso, com menos oxigênio, o DNA sofreu menos oxidação e houve menor produção de radicais livres”, contou Calado.
Quebra-cabeça
Embora o trabalho tenha levantado uma série de resultados inéditos e promissores, ainda há muitas peças do quebra-cabeça a serem encontradas antes que essa linha de pesquisa se torne uma terapia possível de ser testada em humanos.
Um dos primeiros obstáculos a serem superados é descobrir um meio de induzir a pluripotência nas células adultas sem a necessidade de usar um vírus como vetor.
“Em nossa pesquisa, assim como na de Yamanaka, introduzimos em um vírus os genes responsáveis pela expressão das quatro proteínas necessárias para reprogramar a célula. O vírus então se integra ao cromossomo e a célula passa a sintetizar esses fatores de transcrição. Alguns grupos tentaram incluir diretamente os genes nos cromossomos das células, mas o resultado não foi tão eficiente”, contou Calado.
A parte do DNA viral responsável por causar doenças é retirada antes do procedimento. Ainda assim, é consenso entre os cientistas que as células pluripotentes obtidas por essa técnica não devem ser testadas em humanos por causa do risco de induzir a formação de tumores.
“Essas células já foram testadas em animais e, em alguns casos, houve desenvolvimento de tumores. As células-tronco obtidas de embriões já foram aplicadas em humanos e também houve casos de câncer”, contou Calado.
Para minimizar esse risco, afirmou, os cientistas precisam investigar melhor os mecanismos que regulam a expressão dos genes nas células-tronco. Dessa forma, terão um controle maior sobre seu comportamento no organismo.
Outro desafio, no caso específico da anemia aplástica, é encontrar uma forma de promover a transformação das IPS em células-tronco hematopoiéticas. “Hoje conseguimos induzir apenas transformação em células do sangue já diferenciadas, como leucócitos, plaquetas e glóbulos vermelhos”, disse Calado.
O artigo Defective telomere elongation and hematopoiesis from telomerase-mutant aplastic anemia iPSCs (doi:10.1172/JCI67146) pode ser lido em www.jci.org/articles/view/67146 

Nenhum comentário:

Postar um comentário